
Distributed Transactions
with
Two-Phase Commit

Alvin Cheung
Aditya Parameswaran

R&G - Chapter 22

Distributed vs. Parallel?
• Earlier we discussed Parallel DBMSs

• Shared-memory
• Shared-disk
• Shared-nothing

• Distributed is basically shared-nothing parallel
• Perhaps with a slower network

• Possibly thanks to being geographically distributed

What’s Special About Distributed Computing?

• Inherited from shared-nothing parallel computation
• Parallel computation
• No shared memory/disk

• Unreliable Networks
• Delay, reordering, loss of packets

• Unsynchronized clocks
• Impossible to have perfect synchrony

• Partial failure: can’t know what’s up, what’s down

Distributed Database Systems
• DBMS an influential special case of distributed computing

• The trickiest part of distributed computing is state, i.e. Data
• Transactions provide an influential model for concurrency/parallelism
• DBMSs worried about fault handling early on

• Special-case because not all distributed programs are written transactionally
• And if not, database techniques may not apply

• Many of today’s most complex distributed systems are databases
• Cloud SQL databases like Google Spanner, AWS Aurora, Azure SQL
• NoSQL databases like DynamoDB, Cassandra, MongoDB, Couchbase…

• We’ll focus on transactional concurrency control and recovery
• You already know many lessons of distributed query processing

DISTRIBUTED LOCKING

Distributed Concurrency Control
• Consider a shared-nothing distributed DBMS
• For today, assume partitioning but no replication of data
• Each transaction arrives at some node:

• The “coordinator” for the transaction
• Can be designated or assigned on the fly

T1

Where is the Lock Table
• Typical design: Locks partitioned with the data

• Independent: each node manages “its own” lock table
• Works for objects that fit on one node (pages, tuples)

• For coarser-grained locks, assign a “home” node
• Object being locked (table, DB) exists across nodes

“Reserves”

“Sailors”“Boats”

Where is the Lock Table, Pt 2
• Typical design: Locks partitioned with the data

• Independent: each node manages “its own” lock table
• Works for objects that fit on one node (pages, tuples)

• For coarser-grained locks, assign a “home” node
• Object being locked (table, DB) exists across nodes
• These coarse-grained locks can be partitioned across nodes

“Sailors” “Boats”
“Reserves”

Where is the Lock Table, Pt 3
• Typical design: Locks partitioned with the data

• Independent: each node manages “its own” lock table
• Works for objects that fit on one node (pages, tuples)

• For coarser-grained locks, assign a “home” node
• Object being locked (table, DB) exists across nodes
• These coarse-grained locks can be partitioned across nodes
• Or centralized at a master node

ÒSailorsÓ
ÒBoatsÓ

ÒReservesÓ

Ignore global coarse-grained locks for a moment…

• Every node does its own locking
• Clean and efficient
• Nicely generalizes the single-node setting

• “Global” issues remain:
• Deadlock
• Commit/Abort

DISTRIBUTED DEADLOCK DETECTION

What Could Go Wrong? #1

• Deadlock detection via waits—for graphs

T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T3

Each machine doesn’t
have a cycle, but there
is a global cycle

T1

T2

T3

What Could Go Wrong? #1 Part 2
• Deadlock detection via waits—for graphs

• Easy fix: periodically union at designated coordinator
T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T3

DISTRIBUTED COMMIT: 2PC

Strawman: Coordinator makes Decision
• Recall that every txn has a coordinator node
• Coordinator decides if the txn is going to commit or abort.
• Lets all the other nodes know.
• Q: Why is this scheme problematic?

T1

Strawman: Coordinator makes Decision
• Recall that every txn has a coordinator node
• Coordinator decides if the txn is going to commit or abort.
• Lets all the other nodes know.
• Q: Why is this scheme problematic?

! Among other things, one of the nodes may want to abort, even if the coordinator wants to commit
! Some nodes may actually be down (so any txn touching their data shouldn’t proceed)

T1

In General, What Could Go Wrong? #2
• Failures/Delays: Nodes

• Commit? Abort?
• If we haven’t heard from a node, we don’t know if is alive or dead.
• The decision may hinge on this node (imagine a FK violation at that node)

• When the node comes back, how does it recover in a world that
moved forward?

×

What Could Go Wrong? #2, Part 2
• Failures/Delays: Nodes
• Failures/Delays: Messages

• Non-deterministic reordering per channel, interleaving across channels
• “Lost” (very delayed) messages

• How long should we wait for this?

What Could Go Wrong? #2, Part 3
• Failures/Delays: Nodes
• Failures/Delays: Messages

• Non-deterministic reordering per channel, interleaving across channels
• “Lost” (very delayed) messages

• Given this, how do all nodes agree on Commit vs. Abort?

Basic Idea: Distributed Voting
• Vote for Commitment

• How many votes does a commit need to win?
• Any single node could observe a problem (e.g. deadlock, constraint violation)
• Hence must be unanimous.

T1

C(T1)

Distributed voting? How?
• How do we implement distributed voting?!

• In the face of message/node failure/delay?

T1

C(T1)

2-Phase Commit
• A.k.a. 2PC. (Not to be confused with 2PL!)

• Like a wedding ceremony!

• Phase 1: Òdo you take this person... Ó
• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for yes!

• Phase 2: ÒI now pronounce you... Ó
• Coordinator disseminates result of the vote

• Need to do some logging for failure handling....

2-Phase Commit, Part 1
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Prepare(T1)Prepare(T1)Prepare(T1)Prepare(T1)Prepare(T1)

2-Phase Commit, Part 2
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Prepare(T1)

Prepare(T1)

Prepare(T1)

Prepare(T1)

Prepare(T1)

2-Phase Commit, Part 3
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!

• Phase 2:
• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Prepare(T1)

Yes T1b

Yes T1d

Yes T1a

Yes T1c

2-Phase Commit, Part 4
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!

• Phase 2:
• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Yes T1bYes T1dYes T1aYes T1c

2-Phase Commit, Part 5
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Commit(T1)Commit(T1)Commit(T1)Commit(T1)Commit(T1)

2-Phase Commit, Part 6
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Commit(T1)

Commit(T1)

Commit(T1)

Commit(T1)

Commit(T1)

2-Phase Commit, Part 7
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Commit(T1)

Ack(T1d)

Ack(T1c)

Ack(T1b)

Ack(T1a)

2-Phase Commit, Part 8
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

When the coordinator receives messages from all
participants, txn is complete

C(T1)

Ack(T1d)Ack(T1c)Ack(T1b)Ack(T1a)

