
Disk Representations:
Files, Pages, Records

Overview: Files of Pages of Records

¥ Overall:!

¥ Each table is stored in one or more OS files!

¥ Each file contains many pages!

¥ Each page contains contains many records!

¥ Pages are the common currency understood by multiple layers:!

¥ Managed on disk by the disk space manager: "
pages read/written to physical disk/files!

¥ Managed in memory by the buffer manager: "
higher levels of DBMS only operate in memory

Page"
Header

Page"
Header

Page"
Header

Page"
Header

Page"
Header

Page"
Header

Files of Pages of Records
¥ LetÕs talk about a single table for now!

¥ DB FILE: A collection of pages, each containing a collection of records.!

¥ API for higher layers of the DBMS:!
¥ Reads:!

¥ Fetch a particular record by record id É!
¥ Record id is a pointer encoding pair of (pageID, location on page)!

¥ Scan all records !
¥ Possibly with some conditions on the records to be retrieved!

¥ Updates: Insert/delete/modify record!

¥ This abstraction could span multiple OS files and even machines

Many DB File Structures

Information is stored in files in multiple different ways !

¥ Unordered Heap Files!
¥ Records placed arbitrarily across pages!

¥ Clustered Heap Files!
¥ Records and pages are grouped in some meaningful way!

¥ Sorted Files!
¥ Pages and records are in strict sorted order!

¥ Index Files!
¥ B+ Trees, Linear Hashing, É!
¥ May contain records or point to records in other files!

¥ Focus on Unordered Heap Files for nowÉ

Unordered Heap Files

¥ Collection of records in no particular order!
¥ Not to be confused with ÒheapÓ data-structure: efficient max/min!

¥ As file shrinks/grows, pages (de)allocated!

¥ To support record level operations, we must!
¥ Keep track of the pages in a file !

¥ Keep track of free space on pages !

¥ Keep track of the records on a page

Take 1: Heap File as List
¥ Heap file has one special ÒHeader pageÓ!

¥ Location of the heap file and the header page saved e.g., in catalog !

¥ Each page contains 2 ÒpointersÓ plus free space and data
¥ What is wrong with this?!

¥ How do I find a page with enough space for a 20 byte record!
¥ A: Need to access many pages (w/ free space) to check

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Header
Page

Pages with
Free Space

Full Pages

Take 2: Use a Page Directory

¥ Directory, with multiple Header Pages, each encoding:!
¥ A pointer to page!
¥ #free bytes on the page!

¥ There can be multiple such header pages !
¥ Header pages accessed often ! likely in cache !
¥ Finding a page to fit a record required far fewer page loads

than linked list. Why?!
¥ One header page load reveals free space of many pages!

¥ You can imagine optimizing the page directory further!
¥ E.g., compressing header page, keeping header page in

sorted order based on free space, etc. !
¥ But diminishing returns?

Data
Page 1

Data
Page 2

Data
Page N

Header Page

DIRECTORY

Summary

¥ Table encoded as files which are collections of pages!
¥ Page directory provides locations of pages and free space

SSNz Last Name First Name Age Salary

123 Adams Elmo 31 $400

443 Grouch Oscar 32 $300

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

File

PAGE LAYOUT

A Note On Imagery
¥ Data (in memory or disk) is stored in linear order!

¥ This doesnÕt fit nicely on screen!
¥ So we will Òwrap aroundÓ the linear order into a rectangle

Page Basics: The Header

¥ Header may contain ÒmetadataÓ about
the page, e.g.!
¥ Number of records !

¥ Free space!

¥ Maybe a next/last pointer !

¥ Bitmaps, Slot Table!
¥ (WeÕll talk about why all of these

later)

Page Header

Things to Address

Some options:!

¥ Record length? Fixed or Variable!

¥ Page layout? Packed or Unpacked!

Some questions:!
¥ Find records by record id?!

¥ Record id = (Page, Location in Page)!
¥ How do we add and delete records?

Page Header

Fixed Length Records, Packed

Page Header Record

Record Record

Record Record

Record

¥ Pack records densely!
¥ Record id = (pageId, Òlocation in pageÓ)?!

¥ (pageId, record number in page)!!
¥ We know the offset from start of page!!

¥ Offset = header + (record size) x (n-1)!
¥ Easy to add: just append!
¥ Delete?

Fixed Length Records, Packed, Pt 2.

Page Header Record

Record Record

Record Record

Record

¥ Pack records densely!
¥ Record id = (pageId, Òlocation in pageÓ)?!

¥ (pageId, record number in page)!!
¥ We know the offset from start of page!!

¥ Easy to add: just append!
¥ Delete?!

¥ Say we delete (Page 2, Record 3)

Record id:!
(Page 2, Record 4)

¥ Pack records densely!
¥ Record id = (pageId, Òlocation in pageÓ)?!

¥ (pageId, record number in page)!!
¥ We know the offset from start of page!!

¥ Easy to add: just append!
¥ Delete?!

¥ Say we delete (Page 2, Record 3)!
¥ Now free spaceÉ need to reorg

Fixed Length Records: Packed, Pt 3.

Record id:!
(Page 2, Record 4)

Page Header Record

Record

Record Record

Record

Page Header Record

Record Record

Record Record

¥ Pack records densely!
¥ Record id = (pageId, Òlocation in pageÓ)?!

¥ (pageId, record number in page)!!
¥ We know the offset from start of page!!

¥ Easy to add: just append!
¥ Delete?!

¥ Packed implies re-arrange!!
¥ Òrecord idÓ - (Page 2, Record 4) now need to

be updated to (Page 2, Record 3) !
¥ Record Ids need to be updated!!

¥ Could be expensive if theyÕre in other files.

Fixed Length Records: Packed, Pt. 5

Record id:!

(Page 2, Record 3)

Page Header

Record

Record Record

Record Record

Record

Record

Fixed Length Records: Unpacked

¥ Bitmap denotes ÒslotsÓ with records!
¥ Record id = (pageId, Òlocation in pageÓ)?!

¥ (pageId, slotId)!
¥ Insert: find first empty slot in bitmap!
¥ Delete: ?

BitmapRecord id:!
(Page 2, Record 4)

Fixed Length Records: Unpacked, Pt. 2

¥ Bitmap denotes ÒslotsÓ with records!
¥ Record id = (pageId, Òlocation in pageÓ)?!

¥ (pageId, slotId)!
¥ Insert: find first empty slot in bitmap!
¥ Delete: clear bit!

¥ No reorganization needed!!
¥ Small cost of a bitmap, which can be very compact

Record id:!
(Page 2, Record 4)

Page Header

Record

Record Record

Record Record

Record

Record

Bitmap

Variable Length Records
¥ WeÕve already seen that

packed isnÕt the best idea, so
letÕs consider the unpacked
case!

¥ How do we know where each
record begins (mapping
recordid to location)?!

¥ What happens when we add
and delete records?

Record id:!
(Page 2, Record 4) Page Header Record

Record Record

Record Record

Record

First: Relocate metadata to footer

¥ WeÕll see why this is handy shortlyÉ!
¥

Footer

Record Record

Record Record

Record

Slotted Page
¥ Introduce slot directory in footer!

¥ Pointer to free space!
¥ Length + Pointer to beginning of record!

¥ reverse order!

¥ Record ID = location in slot table !
¥ from right!

¥ Delete? !
¥ e.g., 4th record on the page

Footer

Record Record

Record Record

Record

1624321218

Record Id:!
(Page 2, Record 4)

Slot Directory

Slotted Page: Delete Record

¥ Delete record (Page 2, Record 4): !
¥ Set 4th slot directory pointer to

null!
¥ DoesnÕt affect pointers to other

records (no internal reorg, and no
updating of external pointers) Footer

Record Record

Record Record

Record

16243218

Slot Directory
Record Id:!
(Page 2, Record 4)

Slotted Page: Insert Record

¥ Insert:

Footer

Record Record

Record Record

Record

16243218

Slot Directory
Record Id:!
(Page 2, Record 4)

Slotted Page: Insert Record, Pt 2.

¥ Insert:!
¥ Place record in free space on page

Footer

Record Record

Record Record

Record

16243218

Slot Directory

Recor
d

Record Id:!
(Page 2, Record 4)

Slotted Page: Insert Record, Pt. 3

¥ Insert:!
¥ Place record in free space on page!
¥ Create pointer/length pair in next open !

slot in slot directory

Footer

Record Record

Record Record

Record

1624324218

Slot Directory

Recor
d

Record Id:!
(Page 2, Record 4)

Slotted Page: Insert Record, Pt. 4

¥ Insert:!
¥ Place record in free space on page!
¥ Create pointer/length pair in next open !

slot in slot directory!
¥ Update the free space pointer!
¥ Fragmentation? Footer

Record Record

Record Record

Record

1624324218

Slot Directory

Recor
d

Record Id:!
(Page 2, Record 4)

Slotted Page: Insert Record, Pt. 6

¥ Insert:!
¥ Place record in free space on page!
¥ Create pointer/length pair in next open !

slot in slot directory!
¥ Update the free space pointer!
¥ Fragmentation?!

¥ Reorganize data on page!

Footer

Record Record

Record Record

Record

1624324218

Slot Directory
Record Id:!
(Page 2, Record 4)

Slotted Page: Leading Questions

¥ Reorganize data on page!
¥ Is this safe?!

¥ Yes this is safe because records ids!
 donÕt change. Record ids refer to slots!

¥ When should I reorganize?!
¥ We could re-organize on delete !
¥ Or wait until fragmentation blocks !

record addition and then reorganize. !
¥ Often pays to be a little sloppy if page !

never gets more records. !

¥ What if we need more slots?!
¥ LetÕs seeÉ

Footer

Record Record

Record Record

Record

1624324218

Slot Directory
Record Id:!
(Page 2, Record 4)

Slotted Page: Growing Slots

¥ Tracking number of slots in slot directory !
¥ Empty or full

Footer

Record Record

Record Record

Record

1624324218

Slot Directory

5

Record Id:!
(Page 2, Record 4)

Slotted Page: Growing Slots, Pt. 2

¥ Tracking number of slots in slot directory !
¥ Empty or full!

¥ If full slots = number of slots, then extend slot
directory !

¥ To extend slot directory!
¥ Slots grow from end of page inward !
¥ Records grow from beginning of page

inward.!
¥ Easy!

Footer

Record Record

Record Record

Record

1624324218

Slot Directory

5

Recor
d

16

Record Id:!
(Page 2, Record 4)

Slotted Page: Growing Slots, Pt. 3

¥ Tracking number of slots in slot directory !
¥ Empty or full!

¥ Extend slot directory!
¥ Slots grow from end of page inward !
¥ Records grow from beginning of page inward. !
¥ Easy!!

¥ And update count
Footer

Record Record

Record Record

Record

1624324218

Slot Directory

6

Recor
d

16

Record Id:!
(Page 2, Record 4)

Slotted Page: Summary

¥ Typically use Slotted Page!
¥ Good for variable and fixed length records !

¥ Not bad for fixed length records too.!
¥ Why?!
¥ Fixed length records also have NULL fields!
¥ NULL values can be ÒsquashedÓ and indicated using a flag, avoiding full

attribute length storage!
¥ But, if we have only non-NULL fields, can be worth the optimization of

fixed-length format

Footer

Record Record

Record Record

Record

1624324218

Slot Directory

6

Recor
d

16

Record
Formats

RECORD LAYOUT

Record Formats

¥ Each record in a table/relation has a fixed combo of types!
¥ Relational databases also use same page format for data on disk or in memory!

¥ Save cost of conversion (known as serialization/deserialization)!
¥ Assume System Catalog stores the Schema!

¥ No need to store type information with records (save space!)!
¥ Catalog is just another table!

¥ Goals:!
¥ Fast access to fields (why?)!
¥ Records should be compact !

¥ Easy Case: Fixed Length Fields!
¥ Interesting Case: Variable Length Fields

Record Formats: Fixed Length
¥ Finding iÕth field?!

¥ done via arithmetic (fast)!
¥ Making it more compact?!

¥ If all fields are not-null, no good way of compacting!

¥ Else apply variable length techniques, next

3 T HELLO_W

INTEGER DOUBLE

B
O

O
LE

A
N

INTEGER CHARACTER(7)

3.142 3

4 8 1 4 7

24

Record Formats: Variable Length
 What happens if fields are variable length?!

Could store with padding? (Essentially fixed length)!

But have to account for largest possible string (wasteful) or rearrange as
soon as a larger string comes (inefficient).
Could store with delimiters (e.g., commas)?
But makes it hard to find fields and also ensure that commas are not
part of the string

Record
Bob M 32 94703Big, St.

VARCHARVARCHAR CHAR INT INT

Bob M 32 94703Big, St.

CHAR(20) CHAR(18) CHAR INT INT

Wasted Space

¥ What happens if fields are variable length?!

¥ Solution: introduce a record header!

¥ Easy access to fields, and almost as compact as can be (modulo header)!
¥ Same approach can be used to squash fixed length null fields w. many nulls

Record Formats: Variable Length, Pt. 7

Bob

VARCHAR

Big, St.

VARCHAR

M

CHAR

32

INT

94703

INT

Header

Record
Bob M 32 94703Big, St.

VARCHARVARCHAR INT INT

Overview: Representations
SSN Last Name First Name Age Salary

123 Adams Elmo 31 $400

443 Grouch Oscar 32 $300

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

Record

Bob M 32 400Harmon

Varchar Varchar Char Int Int

Slotted Page

Page"
Header

File

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Header M 94
70

3
Bob Harmon32

Byte Representation of Record

Files: Summary
¥ DBMS ÒFileÓ contains pages, and records within pages!

¥ Heap files: unordered records organized with directories!

¥ Page layouts!
¥ Fixed-length packed and unpacked!
¥ Variable length records in slotted pages, with intra-page reorg!

¥ Variable length record format!
¥ Direct access to iÕth field and null values

