Disk Representations:
Files, Pages, Records

Overview: Files of Pages of Records

¥ Overall!
¥ Each table is stored in one or more OS files!
¥ Each file contains many pages!
¥ [Each page contains contains many records!
¥ Pages are the common currency understood by multiple layers:!

¥ Managed on disk by the disk space manager: "
pages read/written to physical disk/files!

¥ Managed in memory by the buffer manager: "
higher levels of DBMS only operate in memory

cs186

Berkeley

= =

e

s ==

o= fous

t— t—=>

Files of Pages of Records Berkeley

cs186

¥ LetOs talk about a single table for now!

¥ DB FILE: A collection of pages, each containing a collection of records.!

¥ API for higher layers of the DBMS:!
¥ Reads:!!
¥ Fetch a particular record by record id E!
¥ Record id is a pointer encoding pair of (pagelD, location on page)!
¥ Scan all records !
¥ Possibly with some conditions on the records to be retrieved!
¥ Updates: Insert/delete/modify record!

¥ This abstraction could span multiple OS files and even machines

cs186

Many DB File Structures Berkeley

Information is stored in files in multiple different ways !

¥ Unordered Heap Files!
¥ Records placed arbitrarily across pages!

¥ Clustered Heap Files! _ _
¥ Records and pages are grouped in some meaningful way!

¥ Sorted Files!
¥ Pages and records are in strict sorted order!

¥ Index Files!)
¥ B+ Trees, Linear Hashing, E!
¥ May contain records or point to records in other files!

¥ Focus on Unordered Heap Files for nowE

Unordered Heap Files ﬂ Berkeley (

¥ Collection of records in no particular order!
¥ Not to be confused with OheapO data-structure: efficient max/min!

¥ As file shrinks/grows, pages (de)allocated!

¥ To support record level operations, we must!
¥ Keep track of the pages in a file!
¥ Keep track of free space on pages!
¥ Keep track of the records on a page

Take 1: Heap File as List ‘ Berkeley (

¥ Heap file has one special OHeader pageO!

¥ Location of the heap file and the header page saved e.g., in catalog !
¥ Each page contains 2 OpointersO plufree space and data
¥ What is wrong with this?!

¥ How do I find a page with enough space for a 20 byte record!

¥ A: Need to access many pages (w/ free space) to check

N~ N N~ X
Data F-uII Pages
/ Page Page Page
‘_/ LA NG
“'\ N N 7N TN
\) Data Data Data
Page Page Page
K T NT

Pages with
Free Space

Take 2: Use a Page Directory

¥ Directory, with multiple Header Pages, each encoding:!
¥ A pointer to page!
¥ #free bytes on the page!

¥ There can be multiple such header pages !

¥ Header pages accessed often - likely in cache !

¥ Finding a page to fit a record required far fewer page loads
than linked list. Why?!

Header Page

——y

Ber

keley

cs186

| | | |
| | [|

C | | |
| 1
| | | |
| | | |

C | | | |
1 1

¥ One header page load reveals free space of many pages! DIRECTORY

¥ You can imagine optimizing the page directory further!

¥ E.g., compressing header page, keeping header page in

sorted order based on free space, etc. !
¥ But diminishing returns?

Data

Page

1

Data

Page

2

Data

Page

N

Summary

¥ Table encoded as files which are collections of pages!

¥ Page directory provides locations of pages and free space
File

123 Adams Elmo 31

443 Grouch Oscar 32
244 Oz Bert 55}

134 Sanders Ernie 55

; Berkeley {

PAGE LAYOUT

cs186

A Note On Imagery Berkeley

¥ Data (in memory or disk) is stored in linear order!

 SHEEEN

¥ This doesnOt fit nicely on screen!
¥ So we will Owrap aroundO the linear order into a rectangle

Page Basics: The Header M

¥ Header may contain OmetadataO about
the page, e.g.!
¥ Number of records!
¥ Free space!
¥ Maybe a next/last pointer !
¥ Bitmaps, Slot Table!

¥ (WeOll talk about why all of these
later)

Things to Address

Some options:!
¥ Record length? Fixed or Variable!
¥ Page layout? Packed or Unpacked!

Some guestions:!
¥ Find records by record id?!

¥ Record id = (Page, Location in Page)!
¥ How do we add and delete records?

Page Header

; Berkeley l

Fixed Length Records, Packed g B—erkglsgy I

Pack records densely! ‘
Record id = (pageld, Olocation in pageO)?!
¥ (pageld, record number in page)!! =
¥ We know the offset from start of page!! =

¥ Offset = header + (record size) x (n-1)!
Easy to add: just append!
Delete?

Fixed Length Records, Packed, Pt 2.

314

314

| Berkeley

Record id:!

Pack records densely! (Pege 2. Resrd) — Page Header ‘

Record id = (pageld, Olocation in pageO)?! | G g

i I
¥ (pageld, record number in page)!! ~

¥ We know the offset from start of page!!
Easy to add: just append!

Delete?!

¥ Say we delete (Page 2, Record 3)

— T

Fixed Length Records: Packed, Pt 3.

| Berkeley

Record id:!
(Page 2, Record 4)

¥ Pack records densely!

Page Header ‘ Record @=————p
¥ Record id = (pageld, Olocation in pageO)
¥ (pageld, record number in page)!! »
¥ We know the offset from start of page!! =
|
¥ Easy to add: just append! :
¥ Delete?!

¥ Say we delete (Page 2, Record 3)!
¥ Now free spaceE need to reorg

Fixed Length Records: Packed, Pt. 5

Berkeley

cs186

Record id:!

¥ Pack records densely! Page 2 Record3) | [‘
¥ Record id = (pageld, Olocation in pageO)?!

¥ (pageld, record number in page)!! =

¥ We know the offset from start of page!! =
¥ Easy to add: just append!
¥ Delete?!

¥ Packed implies re-arrange!!

¥ Orecord idO - (Page 2, Record 4) now need to
be updated to (Page 2, Record 3) !

¥ Record Ids need to be updated!!
¥ Could be expensive if theyOre in other files.

Fixed Length Records: Unpacked V—Berkglsgy I

Record id:! Bitmap
ety s
¥ Bitmap denotes OslotsO with records! Record @——.
¥ Record id = (pageld, Olocation in pageQO)?! -
¥ (pageld, slotld)!

¥ Insert: find first empty slot in bitmap!
¥ Delete: ?

Fixed Length Records: Unpacked, Pt. Q—Berk§£gy l

Record id:! Bitmap

(Page 2, Record 4) Page Header m m U m m U U U U

¥ Bitmap denotes OslotsO with records! Recorg—

¥ Record id = (pageld, Olocation in pageO)’N -
¥ (pageld, slotld)!

¥ Insert: find first empty slot in bitmap!
¥ Delete: clear hit!

¥ No reorganization needed!!

¥ Small cost of a bitmap, which can be very compact

Variable Length Records ‘ Berkeley (

¥ WeOve already seen that ecotiat E— ‘ I~

packed isnOt the best idea, so
letOs consider the unpacked ’_
— [——

¥ How do we know where each
record begins (mapping
recordid to location)?!

¥ What happens when we add
and delete records?

First: Relocate metadata to footer k—Befkels%Y I

¥ WeOll see why this is handy shortlyE!
v =] Ferorde—— recoe
— [recoie——

Footer

Slotted Page ﬂ Berkeley l

¥ Introduce slot directory in footer!

¥ Pointer to free space! m
¥ Length + Pointer to beginning of record! EM
: \
¥ reverse order —— | Retyde—T—r B

¥ Record ID = location in slot table ! \

¥ from right! Footer ‘ 16 o

Slot Director
¥ Delete? ! Record Id:! y

¥ e.g., 4th record on the page (Page 2, Record 4)

Slotted Page: Delete Record ﬁrerkeley |
¥ Delete record (Page 2, Record 4): ! Record e———» | Recqrie— |

¥ Set 4th slot directory pointer to m
null! Record -1==
¥ DoesnOt affect pointers to other =_- ‘\
records (no internal reorg, and no
updating of external pointers) Footer \- 16 E
7 7SIot Directory
Record Id:!

(Page 2, Record 4)

Slotted Page: Insert Record S Berkeley (

¥ |nsert:

Recorde—» | reduo—
= Record — m
— [recode——0) N

ceoier | E I E B 2

Slot Directory

Record Id:!
(Page 2, Record 4)

Slotted Page: Insert Record, Pt 2. S’Berk%? l

¥ Insert:! Record e—— | Redqrde—
¥ Place record in free space on page = o L m

\

— Jreuet—5)

ooer IR 2

Slot Directory

Record Id:!
(Page 2, Record 4)

Slotted Page: Insert Record, Pt. 3 "Bﬂk&@ I

Record @) m

¥ |nsert:!
¥ Place record in free space on page! = e

¥ Create pointer/length pair in next open ! =
slot in slot directory

Footer ‘ O
_/ Slot Directory
Record Id:!

(Page 2, Record 4)

Slotted Page: Insert Record, Pt. 4 S’Berk%? l

¥ Insert:! Record e—— | Redqrde—
¥ Place record in free space on page! = o L m
¥ Create pointer/length pair in next open ! =_
Record o\ p=cor

slot in slot directory!
S ——
¥ Update the free space pointer! - <

¥ Fragmentation? Footer ‘

.] | (]
Record Id:! _/ Slot Directory

(Page 2, Record 4)

¥ Insert:!
¥ Place record in free space on page!
¥ Create pointer/length pair in next open !
slot in slot directory!
¥ Update the free space pointer!

¥ Fragmentation?! SO0l ‘ "_ﬁ
' I Slot Director
¥ Reorganize data on page! Record 1d: _/ y

(Page 2, Record 4)

¥ Reorganize data on page!

¥ |Is this safe?!
¥ Yes this is safe because records ids!
donOt change. Record ids refer to slots!

¥ When should I reorganize?!
¥ We could re-organize on delete !
¥ Or wait until fragmentation blocks !

record addition and then reorganize. ! Footer ‘ \

¥ Often pays to be a little sloppy if page ! _/‘ Slot Directory
never gets more records. ! Record Id:!
(Page 2, Record 4)

¥ What if we need more slots?!
¥ LetOs seeE

Slotted Page: Growing Slots S Berkeley (

¥ Tracking number of slots in slot directory !
¥ E full
[)
| ——>\| Recorde—> |}

Slot Directory

Record Id:!
(Page 2, Record 4)

Slotted Page: Growing Slots, Pt. 2 S’Berk%? l

¥ Tracking number of slots in slot directory !
Al ot =

¥ |If full slots = number of slots, then extend slot
directory ! m

Record

¥ To extend slot directory!

R
¥ Slots grow from end of page inward ! F‘- il l

¥ Records grow from beginning of page Rreacord 1d:1 _/ Slot Directory
inward.! (Page 2, Record 4)

¥ Easy!

Slotted Page: Growing Slots, Pt. 3 rerk%? I

¥ Tracking number of slots in slot directory ! cord
|

o =
¥ Extend slot directory!

¥ Slots grow from end of page inward !
¥ Records grow from beginning of page inward. !

i ma

¥ And update count
_/ Slot Directory
Record Id:!
(Page 2, Record 4)

Slotted Page: Summary

¥ Typically use Slotted Page!

¥

¥ Not bad for fixed length records too.!

¥
¥

¥

.y
=:
e T
— <
S T 2 [=]] o5

Fixed length records also have NULL fields! Slot Directory

NULL values can be OsquashedO and indicated using a flag, avoiding full
attribute length storage!

But, if we have only non-NULL fields, can be worth the optimization of
fixed-length format

Good for variable and fixed length records !

E Berkeley {

RECORD LAYOUT

KK

wW K

cs186

Record Formats Berkeley

Each record in a table/relation has a fixed combo of types!
Relational databases also use same page format for data on disk or in memory!
¥ Save cost of conversion (known as serialization/deserialization)!
Assume System Catalog stores the Schema!
¥ No need to store type information with records (save space!)!
¥ Catalog is just another table!
Goals:!
¥ Fast access to fields (why?)!
¥ Records should be compact !

Easy Case: Fixed Length Fields!
Interesting Case: Variable Length Fields

Record Formats: Fixed Length ‘ B—erkg]sgy l

¥ Finding iOth field?!
¥ done via arithmetic (fast)!

¥ Making it more compact?!
¥ |If all fields are not-null, no good way of compacting!
¥ Else apply variable length techniques, next

4 8 1 4 7

A A

3 3.142 T 3 HELLO_W

INTEGER DOUBLE INTEGER CHARACTER(7)

What happens if fields are variable length?!

Record Formats: Variable Length m
Berkeley

Record
Bob | Big,St. | M | 32 | 94703
VARCHARVARCHAR CHAR INT INT

Could store with padding? (Essentially fixed length)!
Wasted Space

e Bob e Big, St. M 32 94703

CHAR(20) CHAR(18) CHARINT INT

But have to account for largest possible string (wasteful) or rearrange as
soon as a larger string comes (inefficient).

Could store with delimiters (e.g., commas)?

But makes it hard to find fields and also ensure that commas are not
part of the string

Record Formats: Variable Length, Pt. 7\ perkeley

¥ What happens if fields are variable length?!
Record

Bob Big, St. M 32 94703
VARCHARVARCHAR

¥ Solution: introduce a record header!

' |

¥ Easy access to fields, and almost as compact as can be (modulo header)!
¥ Same approach can be used to squash fixed length null fields w. many nulls

Overview: Representations

Record
Bob | Hamon | M | 32 | 400 -----
Adams Elmo
Varchar Varchar Char Int Int
443 Grouch Oscar 32 $300
244 Oz Bert 55 $140
Byte Representation of Record - P — — = $400

-I I I s

Slotted Page

Files: Summary Berkeley

cs186

¥ DBMS OFileO contains pages, and records within pages!
¥ Heap files: unordered records organized with directories!

¥ Page layouts!
¥ Fixed-length packed and unpacked!
¥ Variable length records in slotted pages, with intra-page reorg!

¥ Variable length record format!
¥ Direct access to iOth field and null values

